

Full Band Satellite Tuner

Preliminary Information

DS4969 - 1.4 August 1998

The SL2018 is a fully integrated mixer oscillator with output AGC, intended primarily for application in satellite tuners, where it downconverts the first high IF from the outdoor unit to the second IF for data demodulation.

The device contains a low noise RF input amplifier and mixer functioning to 2.15GHz, an integrated local oscillator and an AGC IF output buffer amplifier. The IF signal is available at one of two outputs selected by the IF-OP-SEL input.

The signal handling of the SL2018 is sufficient to greatly simplify or remove the requirement for input AGC with appropriate image filtering in full band systems, or to remove the requirement for band limit filtering with appropriate AGC in half band systems.

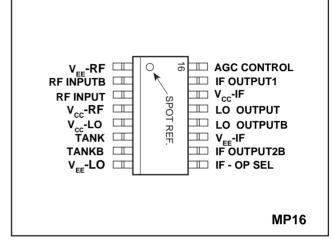


Figure1 Pin connections - top view

FEATURES

- Single chip full band solution, compatible with digital and analog transmissions
- Low noise RF input
- High input signal handling to eliminate the requirement for front end AGC
- Low radiation design
- IF AGC amplifier with dual selectable outputs
- ESD protection. (Normal ESD handling procedures should be observed)

ORDERING INFORMATION

SL2018/KG/MP1S (Tubes) SL2018/KG/MP1T (Tape and Reel)

APPLICATIONS

- Satellite tuners
- Communications systems

QUICK REFERENCE DATA

Characteristic		Units
RF input noise figure	16	dB
Maximum conversion gain	33	dB
Minimum conversion gain	-5	dB
IF1 and IF2 output gain match	2	dB
IP3 _{2T} input referred at minimum conversion gain	+3	dBm
IP2 _{2T} input referred at minimum conversion gain	+17	dBm
LO phase noise at 10kHz	-65	dBc/Hz

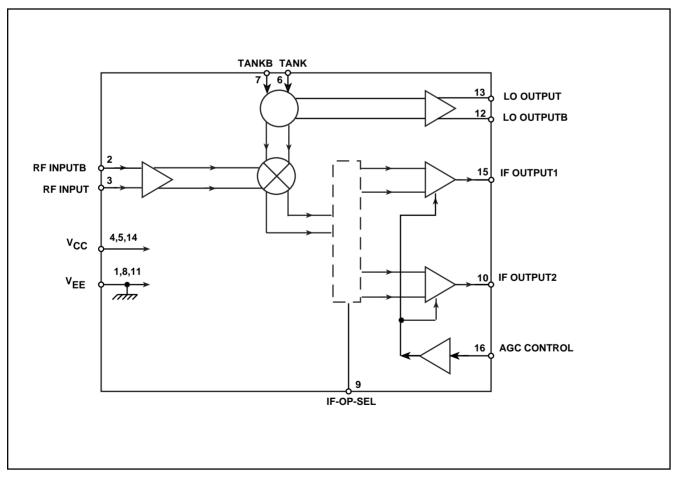


Figure 2 Block diagram

FUNCTIONAL DESCRIPTION

The SL2018 is a downconverter mixer oscillator with an output AGC amplifier, which when used with appropriate external varactor tuned oscillator sustaining network performs the first IF tuning function for a full band satellite receiver system. A block diagram is contained in Figure 2.

In application the RF input of the device is interfaced through appropriate impedance matching to the first IF signal, which is downlinked from the outdoor unit at typically 950-2150MHz. The RF input preamplifier of the device is designed for low noise figure and for low distortion so eliminating the requirement for RF AGC. The preamplifier also provides gain to the mixer section and back isolation from the local oscillator section.

The output of the preamplifier is fed to the mixer section where the RF signal is mixed with the local oscillator frequency, which is generated by an on-board oscillator. The oscillator block uses an external tunable sustaining network and is optimised for wide tuning range.

Signals from the mixer are fed to the AGC IF amplifier, which gives an overall conversion gain programmable from -10 to +30dB. The output of this stage can be switched to one of two outputs to facilitate IF processing.

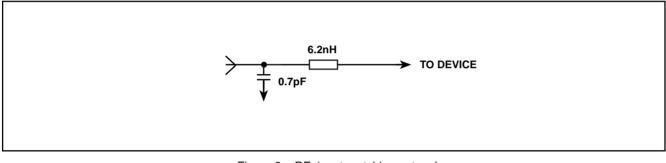


Figure 3 RF input matching network

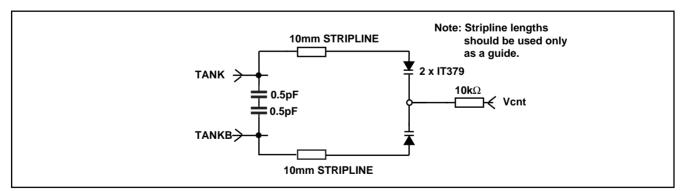


Figure 4 VCO application circuit

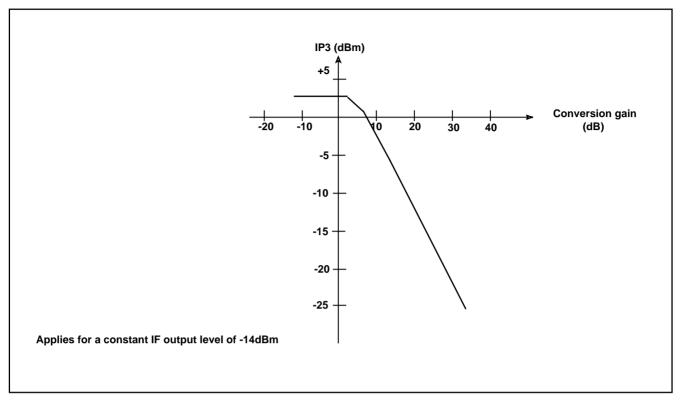


Figure 5 IP3 variation with gain setting (minimum)

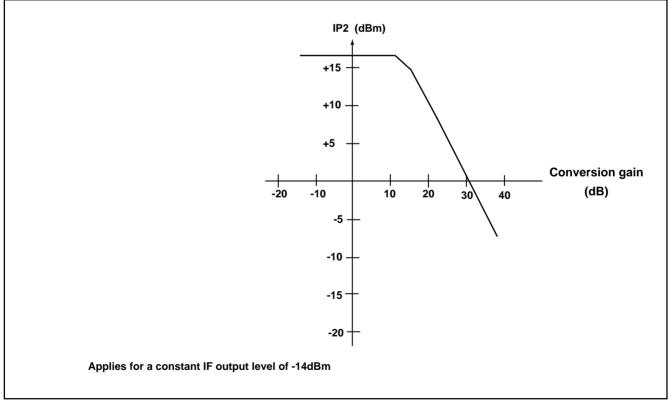


Figure 6 IP2 variation with gain setting (minimum)

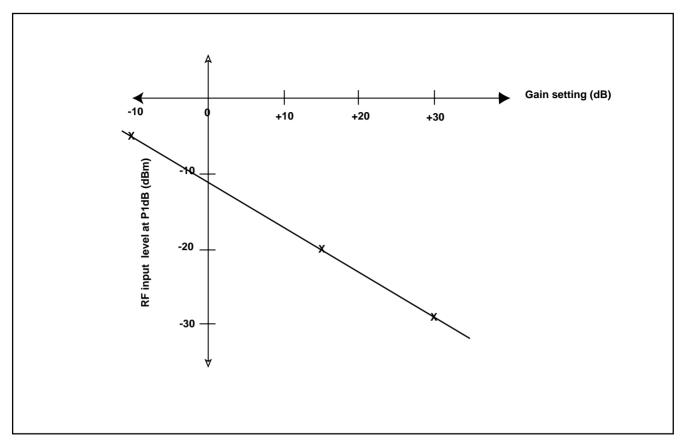


Figure 7 P1dB with gain setting (typical)

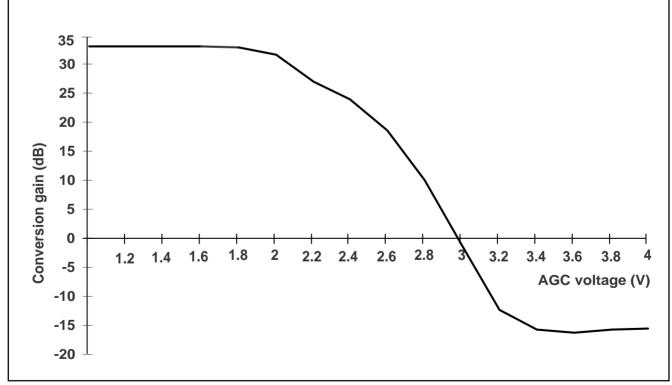


Figure 8 Gain variation with AGC voltage (typical)

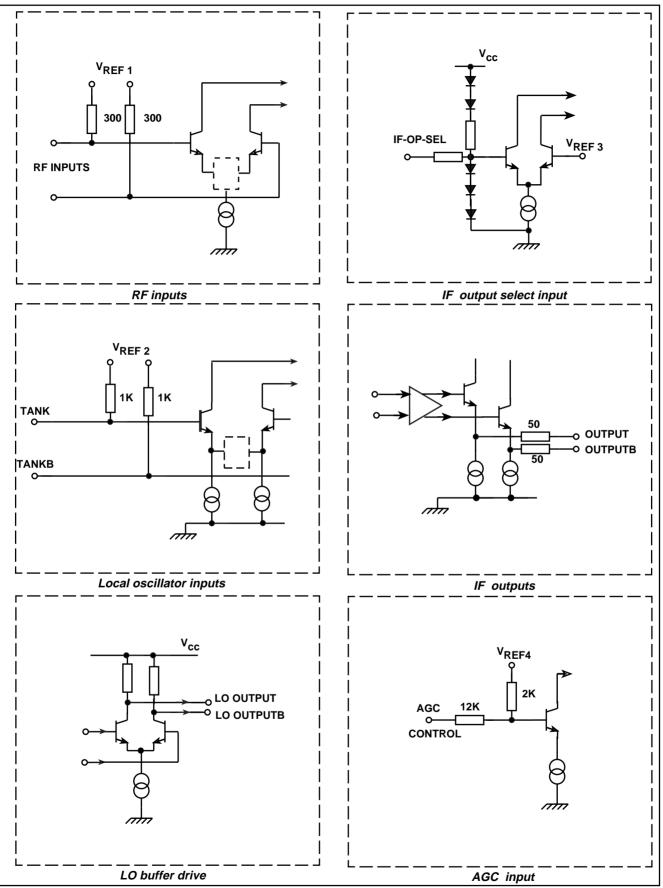


Figure 9 Input/Output interface circuits

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage unless otherwise stated. $T_{AMB} = -20^{\circ}C \text{ to } + 80^{\circ}C, V_{CC} = + 4.75 \text{ V to } 5.25 \text{ V}.$ IF = 479.5MHz; IF bandwidth up to 54MHz maximum. RF input frequency = 950MHz - 2150MHz.

			Value	Value	- Units	Conditions
Characteristic	Pin	Min	Тур	Max		
Supply Current, I _{cc}	4,5,14		80	115	mA	
RF input Noise figure	2,3		16		dB	@ $T_{amb} = 27^{\circ}C$ at maximum gain
Variation of Noise Figure with				1	dB/dB	
AGC setting						
Conversion gain						AGC bandwidth 100kHz
minimum AGC gain			-15	-5	dB	AGC = 4.0V
maximum AGC gain		25	33		dB	AGC = 1.0V
						AGC = self bias (2.4V)
Gain inband ripple		-0.5		+0.5	dB	Channel bandwidth 27MHz
Gain variation across RF input		-2		+2	dB	
range						
Gain imbalance between IF	10, 15	-2		+2	dB	All outputs equally loaded
outputs						
RF input impedance, single	2,3		50		Ω	$@ T_{amb} = 27^{\circ}C$
ended						
RF input return loss	2,3		12		dB	Input unmatched @ T_{amb} = 27°C
RF input IP2	2,3	12	14		dBm	See note 2
RF input IP3	2,3	-1	1		dBm	See note 2
RF input IP3 variation with gain						See Figure. 5
Input referred 1dB gain						See Figure. 7
compression						
Two tone IM2 distortions with		-31	-33		dBc	See note 2
Two tone IM3 distortions		-36	-40		dBc	See note 2
LO tuning range	6,7	1430		2630	MHz	Varactor tuned from 1V to 23V.
						Application circuit as in Figure 4.
LO phase noise	6,7		-68		dBc/Hz	SSB at 10kHz offset, application
						circuit as in Figure 4.

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage unless otherwise stated.

 $T_{AMB} = -20^{\circ}C \text{ to } + 80^{\circ}C, V_{CC} = + 4.75 \text{V to } 5.25 \text{V}.$ IF = 479.5MHz; IF bandwidth up to 54MHz maximum. RF input frequency = 950MHz -2150MHz.

Characteristic	Pin	Value			Conditions	
Characteristic	Pin	Min	Тур	Max	Units	Conditions
LO leakage to RF input	2,3,6,7			-30	dBm	
LO leakage to IF outputs	6,7,10,11					
	14,15			-10	dBm	Maximum conversion gain
LO output drive	12, 13	92			dBµV	Differential into 100Ω
						NB, synthesiser should be driven
						differentially
LO output impedance	12, 13		100		Ω	Differential
LO output return loss	12, 13	8			dB	
AGC gain control slope variation	16					Monotonic from V_{EE} to $V_{CC.}$
						See Figure. 8
AGC control input current	16	-250		250	μΑ	
Output select low voltage	9			0.7	V	O/P 2 enabled, O/P 1 disabled
Output select high voltage	9	V _{cc} -0.7			V	O/P 1 enabled, O/P 2 disabled
Output select low current	9			-50	μA	
Output select high current	9			200	μΑ	
IF output 1 & 2	10, 15					Output in enabled and disabled state
Output impedance			50		Ω	Single ended
Return loss		12			dB	
IF output 1 to 2 isolation	10, 15	30			dB	

Notes:

1. All dBm units refer to a 50Ω system

2. Applies for any two carriers within band at -19dBm, and with AGC set for +5dB conversion gain.

ABSOLUTE MAXIMUM RATINGS

All voltages are referred to $V_{EE} = 0V$ (pins 1, 8, 11)

Parameter	Dim	Val	ue		Conditions
	Pin	Min	Мах	Units	
Supply voltages V _{cc}	4,5,14	-0.3	7	V	Transient
RF input voltage	2,3		2.5	Vp-р	
RF input DC offset	2,3	-0.3	V _{cc} +0.3	V	
Tank inputs DC offset	6,7	-0.3	V _{cc} +0.3	V	
LO output drive DC offset	12, 13	-0.3	V _{cc} +0.3	V	
IF-OP-SEL input DC offset	9	-0.3	V _{cc} +0.3	V	
IF outputs 1 and 2 DC offset	10, 15	-0.3	V _{cc} +0.3	V	
AGC Control input DC offset	16	-0.3	V _{cc} +0.3	V	
Storage temperature		-55	+150	°C	
Junction temperature			+150	°C	
MP16 thermal resistance					
Chip to ambient			111	°C/W	
Chip to case			41	C/W	
Power consumption at V_{cc} =5.25V			580	mW	
ESD protection	ALL	1.75		kV	Mil std 883 latest revision
					method 3015 class 1.

SEMICONDUCTOR

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex
- Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07
- GERMANY Munich Tel: (089) 419508-20 Fax: (089) 419508-55
- ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510
- KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933
- NORTH AMERICA Scotts Valley, USA
- Tel: (408) 438 2900 Fax: (408) 438 5576/6231

Internet: http://www.mitelsemi.com

- SOUTH EAST ASIA Singapore
 Tol:(65) 232 6103 For: (65) 232 61
- Tel:(65) 333 6193 Fax: (65) 333 6192
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
 TAIWAN, ROC Taipei Tel: 886 2 25461260 Fax: 886 2 27190260
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (01793) 726666 Fax: (01793) 518582

These are supported by Agents and Distibutors in major countries worldwide.

© Mitel 1998 Publication No. DS4969 Issue No. 1.4 August 1998 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.